
OIC FILE COP.) i1
ARI Research Note 87-45

A Programmer's Guide to the
Sensory-Effector Interface

00 Keith Barnett
Carnegie-Mellon University

0

for

Contracting Officer's Representative
Judith Orasanu

BASIC RESEARCH LABORATORY
Michael Kaplan, Director

DTIC
ELECTE

SNOV 2 41987

U. S. Army

Research Institute for the Behavioral and Social Sciences

October 1987

Approved for public release; distribution unlimited.

pe\



U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON

EDGAR M. JOHNSON COL. IN

Technical Director Cmadn

Research accomplished under contract

for the Department of the Army

Carnegie-Mellon University

io

Technical review by

Dan Ragland
' ' "Codes

I E~ncia1



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WPen Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
REPORT NUMBER a. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ARI Research Note 87-45

.TITLE (AndSubtitle) S. TYPE OF REPORT & PERIOD COVERED
A Programmer's Guide to the Interim Report
Sensory-Effector Interface January 86 - January 87

6. PERFORMING ORG. REPORT NUMBER

7AUTHOR(q) a. CONTRACT OR GRANT NUMBER(e)

Keith Barnett MDA903-85-C-0324

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Computer Science Department 2Q161102B74F
Carnegie-Mellon University
Pittsburgh, PA 15213

71. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Institute for the Behavioral October 1987
and Social Sciences, 5001 Eisenhower Avenue, 13. NUMBER OF PAGES
Alexandria, VA 22333-5600 8

14. MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) IS. SECURITY CLASS. (of thl report)

Unclassified

15. DECLASSIFICATION/DOWNGRADING
SCHEDULE n/a

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different frog" Report)

IS. SUPPLEMENTARY NOTES

Judith Orasanu, contracting officer's representative

19. KEY WORDS (Continue on reverse side if necesemy and identify by block number)

Sensory-Effector Interface (SEI) World Master
Artificial Intelligence Computer Models
World Modeling System

24L AMTh ACT (centisse - 10V sarde nemm aidetity by block imaber)
This document describes the Sensory-Effector Interface (SEI) provided as

part of the World Modeling System, and explains how to build a new SEI or
extend the existing one.

F.j

DO 0 13 EDITIOW OF I MOV SS IS OWOLZTt
linrI ATFTFn

SECURITY CLASS FICATION OF THIS PACE (Wk.n Dat euEntere



Table of Contents

1. Introduction 2

2. Message Handling 2

2.1 Connecting to the World 2

2.2 Receiving World Changes 3

2.3 Sending World Changes 3

2.4 World States 
4

2.5 Miscellaneous 4
2.6 Protocol Modification in the SEI 5

3. Communicating with an Organism 55
3.1 Connection 

5

3.1.1 FranzLsp 
6

3.1.2 Spice-isp 6

3.1.3 C 
6

3.2 Perception 
6

3.3 Effects

iii



1. Introduction
An S performs three major functions: maintaining its own copy of the world data structures,

selecting information from these structures appropriate to the perception capabilities of a particular
organism, and translating actions taken by aun organism Into changes In the world data structures.

An organism using a world communicates with It only indirectly, through an SEI; each organism
using a world will have its own SEt. Since an organism may be written in any language, there will exist
many versions of the SEI; a core of C routines allowing an SEI to communicate with a world, however,
should be common to all SEls.

In addition to a connection to Its organism (which may be part of the same process) an SEl
maintains a connection to the World Master, from which it receives updates of the world data
structures; only portions of this information will be directly observable by the organism. An SEI may
also have a connection to a graphics process, from which it may receive pixel values or a list of
objects visible to its organism.

See The World-Wide Communication Protocol and The World Data Structure.



2

2. Message Handling

2.1 Connecting to the World

As described..in he, protocpl, the SEI must connect to the World Coordinator and request a unique

ID, which, once received, forms part of the name the SEI checks in for its port. It will receive a

message from the World Master, to which it must respond with Its ID. The master will also indicate the

name of the organism for which the SEI is responsible, and the object in the world to which It

corresponds. The SEI must must wait for an Initial copy of the world, and may then function normally

until forced to exit bythe rmister or its organism.

A connection-to a graphics process is not explicitly made in the SEI. Use of graphics Is specified

upon startup or by'request from the organism; the graphics process will make the necessary

connection, and send the appropriate information. When using vision in this way, the SEI can either

wait to service- its organism until it has received all information from both the master and graphics

processes, or- (since. the-graphics will not begin computation until the master is finished) use vision

information from the previous cycle, out of step with the world state. In the latter case, the SEI must

indicate it is ready for a new cycle immediately after receiving the initial world state, since it would

have no earlier vision information.

Connection to the simulation is made in Sta rtSeiO of commun.c.

Related Protocol Commands: RequestlD, AttachlD, IAmYourMaster, SetOrganismBody,

SetOrganismName, OrganismStarted, TerminateOrganism, ShutDownWorld, OrganismExit,

OkToProceed

2.2 Receiving World Changes

Once connected to the simulation, the SEI will be sent a complete copy of the world state; In

subsequent cycles, it will be sent only the changes which have occurred in the world, and is

responsible for using these to maintain a current copy of the world state. After receiving the updated

world state for a cycle, including vision information if being used, the SEI may Ignore the rest of the

system until Its organism has completed its processing, at which time It must indicate that It Is ready

for the next cycle, and wait for the next set of world changes. The master sends no changes unless It

has already verified that they are valid, so the SEI should not need to perform error checking when

receiving changes.

-A



3

The object data structure maintained by the SEI is not identical to that in the master. In particular,
where object transforms in the master are relative to higher level objects, all transforms in the SEI are

absolute. This will be more efficient only if transforms do not change often; it is done so that an SEI
may more easily handle direct references to primitive objects by its organism.

ComputeGlobalCoordsO in commun.c does this.

Related Protocol Commands: SetTimeStep, SetWorldTime, SetContacts,

SetAtmosphericViscosity, SetDirectedLight, SetAmbientLight, SetAmbientTemperature,
CreateObject, SetObject, InsertNextObject, RemoveNextObject, RemoveSubObject, DeleteObject,

CreateEmission, InsertNextEmission, RemoveNextEmission, DeleteEmission, StartCycle,
StartPerqUpdate, EndPerqUpdate, OkToProceed

2.3 Sending World Changes

At any time after receiving world changes and before indicating readiness for a new cycle, an SEI
may request a change to the world as specified by an effect of its organism. It should not make such

changes to its copy of the world directly; they will be returned with the next set of changes after being
verified by the world master. Before sending a message containing changes, an SEI must request
rights and wait for them to be granted; it should hold its rights for as brief an interval as possible.

All changes sent by the SEI are handled in effect.c.

Related Protocol Commands: RequestPights, GrantRights, ReleaseRights, Acknowledge,

SetObject, CreateEmission, OkToProceed

2.4 World States

Periodically, the master may request that the SEI save its state. It will also inform the SEI of where

the master state is saved. The SEI should save its state and respond with a shell command which
would cause the SEI, and organism If possible, to be restarted and connected to an existing

simulation having the same state as at the time of the save. Such a shell command might be the
execution of a saved lisp Image, or the execution of the SEI with an argument Indicating where a state

was written.

The master may also request that the SEI restore Itself to a particular state. In most cases this will

not be possible, and the master will have to execute the corresponding shell command; if the state of

the organism was written to a file, however, the SEI may be able to restore its state without the
necessity of restarting It as a new process.



4

The actual process of saving a state is handled by code specific to a particular SEI and organism.

Related Protocol Commands: SetCheckpointPath, SaveState, RestoreState, RestoreCompleted,

UnableToRestore

2.5 Miscellaneous

An SEI may send most of the commands available to a User Interface, if for some reason this needs

to be done.

An SEI may receive a broadcast message from the master at any time (these may typically be

ignored).

If a message the SEI sends to the master contains an error, the master will indicate as much.

Related Protocol Commands: DisplayMessage, ProtocolError

2.6 Protocol Modification in the SEI

Low.level manipulation of messages is done in link.c. Processing of commands received from any

source is done in GetWorldChangesO and ProcessMsgO of commun.c, and the routines they call.

As mentioned above, changes are produced in effect.c. See the code for details.



5

3. Communicating with an Organism
See Building Organisms for specifica*ions of what capabilities a general SEI is expected to provide

for organisms; see code referred to for details of how this is done.

3.1 Connection

The core of the SEI is contained in commun.c, link.c, effect.c, and percelve.c. For a particular

langauge, two additional modules have to be defined: one in the given language, to build appropriate

data structures and make available the routines in effect.c and percelve.c, and one written in C, to

provide certain definitions, plus any general functions required to link C to the language. Required

definitions are CKPfile, a string in which the name of a state file will be written; OpenDebugO, a

routine accepting a string and opening a debug file if appropriate; DumpStateO, a routine to save the

state of the SEI and organism, In the file named by CKPfile; and ProcessOrgReqO, which should be

a stub unless the organism is a seperate process connected to the SEI by ipc.

3.1.1 FranzLIsp

An organism written in FranzLisp will be part of the same. process as its SEI. f ranzsei.l provides

the interface. The C portion of the SEI is loaded in here, with any C routine to be called directly from

lisp explicitly addressed. In addition, the function (fnaddr) is defined and its address passed to C

routines, enabling C code to call compiled lisp functions when necessary; this linkage Is done in

franzlink.c.

Because of the way in which FranzLisp loads files, all external references in C modules used by

FranzLisp must be strictly ordered. This order is utility modules, link.c, franzlink.c, commun.c,

effect.o, and perceive.c; no module higher in the list may refer to objects in a lower module.

The program buildsel may be used to create an Image of a lisp process with the SEI already loaded

in (loading In an SEI takes a long time). The file It creates Is very large (a megabyte). This Is very

useful for an SEI which is stable. buildsoI requires two arguments: the file containing the SEI lisp

code, and the executable file to create. The user will be prompted for these if they are not supplied on

the command line. The standard SEI for frmnzlisp is created automatically by the makefile.



6

3.1.2 SpiceLIsp

A organism written In SpiceLisp must load the module selface.sllsp, which is linked to the SEI by a

level of ipc beyond the standard protocol of the World Modeling System. Such requests are handled

In ProcessOrgReqO of rklink.c. Currently, only one format for perception is available, and only a

limited set of effector functions; additional use of the capabilities of the standard SEI is easily

achieved by expanding the protocol in these two modules.

3.1.3 C

An SEI written entirely in C should use a modified version of perceive.c rather than an interface to

it.

3.2 Perception

World data structures are maintained in commun.c. Routines in percelve.c are Intended to

extract fields of these structures observable by an organism, convert Information to a specified format

(e.g., organism.centered spherical coordinates rather than absolute cartesian coordinates), and store

requested information in a buffer so that a module of an SEI written In the language of the organism

can build structures appropriate to that language.

Code in such a specialized module of the SEI must directly correspond to code in perceive.c; I.e.,

Information must be stored in and taken from the buffer In the same order, and, in the case of vision,

the order in which objects appear in the buffer due to successive calls to nextObjectO implies the

tree structure of the world. This Is reset by a call to updateObjectListO. Touch is buffered In

loadContactsO. Other senses are not yet implemented.

Functions to return sensory information, such as those described in Building Organisms, must be

written in the language of the organism, and must call the routines mentioned, In addition to others to

extract information from the buffers created. In FranzLisp, C routines getdoubl.0 and getintegerO

retrieve values from the buffer; In SpiceLisp, an entire buffer Is transferred In a message and

unpacked by similar functions in lisp.

3.3 Effects

Arguments to effector functions must be pointers if the functions are to be called directly from

FranzLisp. Changes made should be buffered with the OueueXXXO routines provided in effect.c;

they will be sent after oktoproceedO Is called. The macro IFQFULLFLUSH must be included before

queuing a command; OueueSetSmdO does this for objects. WorldCoordO will convert a vector

from organism-centered to world coordinates. See the code for examples.

-A.~m llmmlm m m


